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Road traffic accidents are primarily caused by drivers error. Safer roads infrastructure and
facilities like traffic signs and signals are built to aid drivers on the road. But several factors
affect the awareness of drivers to traffic signs including visual complexity, environmental
condition, and poor drivers education. This led to the development of different ADAs
like TSDR that enhances vehicle system. More complex algorithms are implemented for
improvement but this affects the performance of a real-time system. This study implements a
real-time traffic sign detection and recognition system with voice alert using Python. It aims
to establish the proper trade-off between accuracy and speed in the design of the system.
Four pre-processing and object detection methods in different color spaces are evaluated
for efficient, accurate, and fast segmentation of the region of interest. In the recognition
phase, ten classification algorithms are implemented and evaluated to determine which
will provide the best performance in both accuracy and processing speed for traffic sign
recognition. This study has determined that Shadow and Highlight Invariant Method for the
pre-processing and color segmentation stage provided the best trade-off between detection
success rate (77.05%) and processing speed (31.2ms). Convolutional Neural Network for
the recognition stage not only provided the best trade-off between classification accuracy
(92.97%) and processing speed (7.81ms) but also has the best performance even with lesser
number of training data. Embedded system implementation utilized Nvidia Jetson Nano
with interface Waveshare IMX219-77 camera, Nvidia 7” LCD and generic speaker and
programmed in Python with OpenCV, sci-kit learn and Pytorch libraries. It is capable of
running at an adaptive frame rate from 8-12 frames per second with no detection and down
to approximately 1 frame per second when there is traffic sign detected.

1 Introduction
The World Health Organization (WHO) in 2013 reported that road
traffic accidents that result to loss of lives and damages to properties
will continue to become a global challenge due to rapid motoriza-
tion and insufficient action of national governments [1]. In the
Philippines, traffic accidents are mainly due to driver’s error [2]
or violation [3] and this prompts government agencies to focus on
regulation of driver by means of licensing and provide safer roads
by building infrastructures like traffic lights and signs. Another
solution includes the development of advanced driver-assistance
systems (ADAs) that enhance vehicle systems to aid drivers on the

road. But this system faces its own challenge, for instance, traffic
sign detection and recognition (TSDR) system is often exposed to
different weather phenomenon and road conditions [4] that degrades
their effectivity [5]. This can be solved by employing more complex
algorithms but this has an adverse effect to processing speed that is
a must for smart vehicle systems. This trade-off between system ac-
curacy and speed is still the biggest challenge in the implementation
of ATSDR systems.

This paper “Real-Time Traffic Sign Detection and Recognition
System for Assistive Driving” is an extension of work originally
presented by the authors in International Symposium on Multimedia
and Communication Technology (ISMAC) 2019 entitled “Traffic
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Sign Detection and Recognition for Assistive Driving” [6]. The
goal of this study is to help solve the problem of drivers neglect
and lack of road education by implementing an ATSDR system that
automatically detects and recognizes road traffic signs then provides
information to the driver about the meaning of the signs. This work
is the full implementation of a study that the previous work [6] is a
part of. The differences between this work and the previous work in-
clude (1) gathering and utilization of new traffic road image dataset
and road sign image datasets for training and testing the system,
(2) evaluation of four pre-processing and detection methods for the
detection stage, (3) addition of a Convolutional Neural Network
(CNN) deep learning algorithm in the evaluation for the recognition
stage aside from the original nine methods, (4) the detection and
recognition methods are evaluated not only using the segmentation
and classification success rate (accuracy) metric but also processing
speed, (5) system-level optimization is done to improve accuracy
by fine-tuning sub-processes and a negative class is added to reduce
false detection, (6) the models are fully implemented not only in
a personal computer but in an embedded system using microcom-
puter with interface camera, display and speaker, and (7) the system
installed in a sedan car is tested in an actual road setup.

Traffic signs defined by the Department of Public Works and
Highways to be recognized must be strategically positioned, clear
and fully visible [7] and captured in good weather condition during
daytime and will be limited only to six regulatory signs correspond-
ing to speed limit, no overtaking and no turning shown in Figure 1.
These are generally characterized by their red circular boundaries.
The detection and recognition will only be limited to a single traffic
sign in a single video frame. The capturing device will be installed
to a sedan car with a target maximum speed of at least sixty (60)
kilometers per hour. The system will be able to provide voice alert
to the driver before the car completely passed by the traffic sign. Im-
plementation of the system will make use of methods from previous
studies using Python and open-source libraries.

Figure 1: Traffic signs to be recognized

Several implementations of traffic sign detection and recognition
systems used different algorithms in pre-processing, detection and
recognition phases. Pre-processing stage is necessary to suppress
noise and improve image performance [8]. A study [6] showed the
detection improvements in traffic sign recognition provided by the
use of pre-processing and filtering methods by means of contrast

stretching, color normalization and image enhancement before get-
ting the regions of interest. Other techniques are applied depending
on the choice of segmentation method in the detection stage which
can be color-based, shape-based or combination of both, though
color-based is widely implemented in the detection of road signs
[9]. Shape based segmentation may have problem when there are
similar objects to the traffic signs. It can be quite computationally
expensive, and by nature, sensitive to noise. Many shape detectors
are slow in computing over large and complex images [10] which
will become an issue in a real-time system. The complexity of
color based lies in the usage of three intensity values depending
on the color space instead of just working in gray level image as
in shape based. But still, color segmentation is used more often as
color usually provides enough information on the meaning of the
traffic sign to be recognized than shape segmentation. Difficulties in
color-based detection include lack of standard colors among coun-
tries, and various phenomenons and different imaging conditions
that cause color variations. In these cases, traffic sign images may
appear with varying illumination, blurred, faded, highlighted, noisy,
and physically damaged [5] affecting the performance of the color
segmentation process. A study [11] solved this problem by instead
of working on absolute RGB values, relative RGB values are used
for they are almost unchanged with various illumination circum-
stances. Another study [8] combined four color spaces namely
RGB, HSV, YIQ, and XYZ based on histogram to provide more
accurate segmentation. Color is segmented using K-means clus-
tering and effective robust kernel based Fuzzy C-means clustering
resulting to a more accurate segmentation but has increased compu-
tational complexity. In [10], color segmentation in RGB color space
followed by shape segmentation using joint transform correlator
(JTC) template matching had been implemented for a more efficient
system. A study [12] solved the unreliability issue of RGB due
to sensitivity to illumination variation by working on HSV color
space along with shape based filtering through template matching.
HSV is a non-linear transform of RGB where any color can be
represented by hue and the depth or purity of color by saturation
[13] whose values are not affected by light intensity [12]. In [14],
three methods of segmentation based on improved HSL color space
were implemented that provided independence between chromatic
and achromatic components resulting to robustness in changes in
external light conditions. Based on success rate in segmentation,
thresholding using global mean of luminance is the best method
followed by segmentation using region growing then by improved
HSL normalization. Another study [15] solved the effect of poor
lighting by RGB channel enhancement using histogram equalization
followed by color constancy algorithm before segmentation in HSV
color space. Color constancy is the ability to correctly determine
the color of objects in view irrespective of the illuminant [16].

Several studies evaluated different segmentation algorithms
based on segmentation success rate and processing time. A study
[5] evaluated four color segmentation methods namely, Dynamic
Threshold Algorithm, Modified de la Escaleras Algorithm, Fuzzy
Color Segmentation Algorithm, and Shadow and Highlight Invari-
ant Algorithm, in red color segmentation of traffic sign in different
road conditions and distances. Fuzzy Color Segmentation has the
best segmentation success rate followed by Shadow and Highlight
Invariant. In processing time, Shadow and Highlight Invariant has
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the best average time, Fuzzy Algorithm has the best standard de-
viation and the most stable. Using the dataset with traffic image
taken at different distances and conditions, Shadow and Highlight
Invariant has the best performance. Another study [17] evaluated
shape-based and color-based segmentation methods for traffic sign
recognition using Matlab. Metrics in evaluation include number of
recognized signs, lost signs, falsely recognized signs and speed of
recognition. Among the evaluated methods are RGB Normalized
Thresholding, Hue and Saturation Thresholding, Hue and Satura-
tion Color Enhancement Thresholding, Ohta Space Thresholding,
Grey-Scale Edge Removal, Canny Edge Removal, and Color Edge
Removal. Results showed that color space thresholding methods
are the best methods in segmentation success rate and speed. RGB
normalized method provided best recognition score among the algo-
rithms evaluated. Edge detection methods had the worst execution
speed and excessive false detection percentage. Findings showed
that edge-detection methods may be used as a complement to other
color-segmentation methods, but they cannot be used alone, and
normalization, as in the RGB Normalized method or Ohta Space
Thresholding, improves performance and represents a low-cost op-
eration.

In recognition stage, the use of neural networks in classifica-
tion of road signs provides considerable saving in computational
requirement as compared to template matching [9]. Several studies
implemented deep learning algorithms for traffic sign recognition
due to their high accuracy with faster processing speed [18]-[20]. In
[21], detection and classification of circular traffic signs used CNN
after pre-processing and Hough Transform using TensorFlow using
accuracy metric attaining 98.2%. In [22], 24 traffic sign classes were
used in recognition using deep CNN that achieved 100% accuracy.
Another study [23] used masked R-CNN in the detection (Region
Proposal Network) and recognition (Fast R-CNN) of over 200 traffic
sign categories where data augmetation is implemented and resulted
to less than 3% error rate. The disadvantage of neural network lies
on the training overhead and architecture of multi-layer networks
cannot be adapted for online application. In order to distinguish
among different classes for classification, specific features of the
input data must be chosen. In [4], histogram of oriented gradient
is used as feature descriptor for classification of traffic signs as it
captures color and shape as one feature.

2 Methodology

Shown in Figure 2 is the methodology for the proposed real-time
traffic sign detection and recognition system starting with image ac-
quisition for training the detection and recognition models followed
by testing. The system will be designed in Python using the OpenCV,
sci-kit learn, and Pytorch libraries and will be implemented in a
microcomputer with interfaced camera and speaker.

2.1 Data Acquisition

Input traffic data will be acquired by the system using a camera
interfaced to the microcomputer. Videos taken will be processed per
frame by the system. Some testing process will make use of traffic
images to be stored in the microcomputer.

Four sets of data will be used in the implementation and testing
of the system. For the detection phase, a set of local traffic images
from Google Images containing actual road and traffic images with
different traffic signs to be detected will be used to test the models.
Another set of data is composed of road traffic images from dataset
of Napier University containing actual road with traffic signs to
be detected captured in different distances. The recognition phase
model will utilize one set of data containing images cropped to fully
view the standard traffic sign from actual Philippine roads. The last
set of data is actual video footage from local road to test the full
performance of the traffic sign detection and recognition system.

Figure 2: Overview of methodology

2.2 Pre-processing and Detection

The detection phase is composed of pre-processing, color-based
segmentation, shape-based detection and object localization. This
study will evaluate four different pre-processing and color-based
segmentation methods that solved the problem of lighting varia-
tions affecting the detection phase. Methods to be evaluated that
use different filtering techniques in different color spaces are RGB
Normalized Thresholding with Color Constancy Algorithm, Seg-
mentation using Relative Values of RGB, Shadow and Highlight
Invariant Method, and HSV-based Segmentation with Bilateral Fil-
tering.

2.2.1 RGB Normalized Thresholding with Color Constancy
(CCM)

Histogram equalization of separate RGB channels is done followed
by color constancy algorithm to extract the true color of the image
[15]. The algorithm computes local space average color using a par-
allel grid of processing elements used to shift the color of the input
pixel in the direction of the gray vector. Target color segmentation
is done in HSV color space [16].

2.2.2 Segmentation using Relative Values of RGB (RRGB)

Segmentation that is based in three rules using the RGB color space.
The pixel will be regarded as the target red color when (i) red
component is greater than α, (ii) difference between red and green
components is between β1 and β2 , and (iii) the difference between
the red and blue components is between γ1 and γ2 . The values of
α, β1, β2, γ1, and γ2 are experimentally found to represent the red
color perceived in different lighting conditions [11].
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2.2.3 Shadow and Highlight Invariant Method (SHI)

Utilized the normalized HSV color space values. Segmentation
happens in the hue image where hue is 255 if the pixel’s hue is
between 240 and 255, or hue is between 0 and 10. Hue will be set
to 0 if pixel’s saturation is less than 40, or pixel’s value does not fall
between 30 and 230. The hue image and seed image from the new
hue is used, applying region growing algorithm to find target proper
region [5].

2.2.4 HSV-based Segmentation with Bilateral Filtering (BFM)

Traffic images undergo pre-processing in the RGB color space be-
fore the detection stage. Bilateral filtering smoothens the image
while preserving the edges by means of a nonlinear combination
of nearby pixel values [24]. The weight assigned to each neighbor
decreases with both the distance in the image plane and the distance
on the intensity axis.

One of the four methods will be used for color-based segmen-
tation to improve the efficiency and speed of detection of the next
stage by reducing search areas that do not contain any possible
traffic sign [9, 25] defined by pixels falling outside the target red
color.

The next phase is the shape detection using Hough transform to
detect the circular shape of the traffic sign. Hough transform has
been recognized as a robust technique in curve detection that can
detect objects even when polluted by noise [26]. It transforms a set
of feature points in the image space into a set of accumulated votes
in a parameter space. For each feature point, votes are accumulated
in an accumulator array for all parameter combinations. Only one
circle, by means of highest number of votes, will be detected as in-
creasing the number of detection will also increase the time required
to process multiple regions for the succeeding phases. The last stage
in the detection phase is the object localization or the cropping of
the candidate traffic sign from the traffic image to be used for the
classification stage.

2.3 Feature Extraction

Histogram of Oriented Gradients (HOG) features are extracted from
the candidate traffic sign images by the Python program to become
the key feature for classification for the nine machine learning al-
gorithms. The image from the dataset undergoes RGB to grayscale
conversion and edge detection. The resulting image is then resized
before using the built-in HOG extractor library in Python [6].

The steps above are important in ensuring optimum accuracy of
the features when training the machine learning classifiers. HOG
feature provides excellent performance relative to other existing
feature sets [27].

2.4 Classifier

To classify the candidate traffic sign images, learning algorithms
will be used. For this study, ten learning algorithms are implemented
using sci-kit learn library [28] and Pytorch [29] in Python. The clas-
sifiers [30] to be evaluated based on accuracy and processing speed
for traffic sign recognition are as follows.

2.4.1 K Nearest Neighbor (KNN)

KNN is a method where classification is computed from a
simple majority vote of the nearest neighbors of each point
[31]. Existing Python implementation of KNN uses model
KNeighborsClassifier(n neighbors=1) where a single neigh-
bor is obtained for prediction.

2.4.2 Support Vector Machine (SVC)

An SVM is a discriminative classifier formally defined by a sepa-
rating hyperplane. The algorithm outputs an optimal hyperplane
using labeled training data which categorizes where the new ex-
amples are [32]. Implementation of the SVC will make use of the
model SVC(kernel="linear", C=0.025) for linear kernel and
with regularization parameter C of 0.025.

2.4.3 Gaussian Process Classifier (GPC)

Gaussian Processes predict by computing for empiri-
cal confidence interval using probabilistic Gaussian dis-
tribution [33]. For GPC implementation, the model
GaussianProcessClassifier(1.0 * RBF(1.0)) will be used
utilizing the default squared-exponential kernel as radial basis
function.

2.4.4 Decision Tree Classifier (DTC)

Decision Trees are non-parametric supervised learning method used
for classification and regression with goal of creating a model
that predicts the value of a target variable by learning simple de-
cision rules inferred from the data features [34]. The model to
be used will be DecisionTreeClassifier(max depth=5) with
maximum depth of the decision tree equal to 5. The deeper the tree,
the more complex the if-then-else decision rules and the fitter the
model.

2.4.5 Random Forest Classifier (RFC)

Random Forest algorithm is a supervised classification algorithm
which creates a forest with a number of trees. The higher the num-
ber of trees in the forest gives the high accuracy results [35]. The
model to be used is RandomForestClassifier(max depth=5,
n estimators=10, max features=1) utilizing 10 decision
trees, each with maximum depth of 5 and considering only 1 feature
when looking for the best split.

2.4.6 Multilayer Perceptron (MLPC)

MLPC can be viewed as a logistic regression classifier where the
input is first transformed using learnt non-linear transformation
that projects the input data into a space where it becomes linearly
separable [36]. Existing implementation model MLPClassifier
(alpha=1e-5) will be used with L2 penalty parameter or regular-
ization term equal to 0.00001. Smaller value of alpha may fix high
bias which is a sign of underfitting by encouraging larger weights,
potentially resulting in a more complicated decision boundary, while
larger alpha value helps in avoiding overfitting by penalizing weights
with large magnitudes [30]
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2.4.7 AdaBoost (AdaB)

An AdaBoost classifier is a meta-estimator that begins by fit-
ting a classifier on the original dataset and then fits additional
copies of the classifier on the same dataset but where the weights
of incorrectly classified instances are adjusted such that subse-
quent classifiers focus more on difficult cases [37]. The model
AdaBoostClassifier() will be used utilizing default hyper-
parameter values where the base estimator is a decision tree classifier
with a maximum depth of 1 and the maximum number of estimators
is 50.

2.4.8 Gaussian Naive Bayes (GNB)

GNB is a special type of NB algorithm used when the features have
continuous values and assumes that all the features are following
a Gaussian distribution i.e, normal distribution. It scales cubically
with the size of the dataset and might be considerably faster [38].
The model to be utilized calls GaussianNB().

2.4.9 Quadratic Discriminant Analysis (QDA)

QDA is closely related to LDA but uses quadratic decision sur-
face. It can be derived from simple probabilistic model where
prediction is obtained by using Bayes’ rule. The model fits a
Gaussian density to each class [39]. In QDA, individual covari-
ance matrix is estimated for every class of observations. QDA be-
comes useful when there is prior knowledge that individual classes
exhibit distinct covariances. The model that will be utilized is
QuadraticDiscriminantAnalysis().

2.4.10 Convolutional Neural Network (CNN)

It is a neural network mathematical model based on connected ar-
tificial neurons similar to biological neural networks. Neurons are
organized in layers and connections are established between neu-
rons of adjacent layers. The output layer neurons amount is equal
to the number of classifying classes with probabilities showing the
possibility that the input vector belongs to a corresponding class
[18]. The training process is to minimize the cost function with
minimization methods based on the gradient decent also known as
backpropagation [19]. The CNN model to be utilized is based on
LeNet-5 architecture [40] composed of seven layer combination of
convolution, pooling with rectified linear unit (ReLU) activation
function and fully connected layers shown in Figure 3.

Figure 3: CNN model based on LeNet-5 architecture [40]

Table 1 summarizes the modification to hyper-parameter values
done for the implementation of all the learning algorithms using sci-
kit learn and Pytorch libraries in Python. All other hyper-parameters
not modified are set to their default values.

Table 1: Summary of modified hyper-parameters for learning algorithms implemen-
tation

Learning Algorithm Modified Hyper-parameter
KNN n neighbors=1

SVC kernel=”linear”, C=0.025

GPC None

DTC max depth=5

RFC max depth=5, n estimators=10, max features=1

MLPC alpha=1e-5

AdaB None

GNB None

QDA None

CNN 6 classes output

2.5 Evaluation

The evaluation phase of the designed model will be divided into
three: detection, recognition, and system level testing. For this
study, the detection and recognition models will be tested individ-
ually based on accuracy and speed using Lenovo U410 ultrabook
before a system level testing is performed.

2.5.1 Detection Model Testing

After implementation of the four pre-processing and segmentation
models, traffic images will be fed. Accuracy will be computed us-
ing Equation 1. T P is defined by correct detection on image with
traffic sign, T N when there is no detection for traffic image without
traffic sign, FP for detection when the image has no traffic sign or
detection of other part of the image with traffic sign, and FN for
non-detection of the traffic image with traffic sign. Processing speed
of the sub-processes will also be measured for the entire detection
process.

Accuracy =
T P + T N

T P + T N + FP + FN
(1)

2.5.2 Recognition Model Testing

For the testing of the implemented recognition model, cross valida-
tion method will be used wherein portion of the dataset will be used
for training while the remaining will be for testing. A confusion
matrix will then be generated. Evaluation metric to be used is accu-
racy that determines whether a label predicted for a sample exactly
matches the corresponding true label of the sample. Equation 1
will be used to compute for accuracy. Processing time of the entire
recognition model and its sub-processes will also be recorded.

2.5.3 System Level Testing

For the system level testing, the best detection and recognition mod-
els based on the evaluation will be integrated to create the entire
model of the system using Nvidia Jetson Nano with interface Wave-
share 7” LCD, IMX219-77 camera and generic speaker. Accuracy
and speed of detection will be tested using an actual video taken in
local road. System level accuracy will be computed to be the prod-
uct of detection accuracy and recognition accuracy using Equation 1.
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A successful recognition means that the system has provided a voice
alert about the detected traffic sign. A text-to-speech python module
will be used for this function and the corresponding voice alert for
each traffic sign detected is shown in Table 2. A text annotation will
also be generated to the display.

Table 2: Voice alert and text annotation for target traffic signs

Traffic Sign Voice Alert Text Annotation
Left Turn Prohibition No Left Turn No Left Turn

Right Turn Prohibition No Right Turn No Right Turn

U-Turn Prohibition No U-Turn No U-Turn

Overtaking Prohibition No Overtaking No Overtaking

30kph Speed Limit Thirty kph 30 kph

60kph Speed Limit Sixty kph 60 kph

3 Results and Analysis

3.1 Dataset

A total of 2,194 images are used to test the detection phase of the
models. Of these, 2,170 are traffic images from online sources with
traffic sign having different viewing angle and position on image.
These are evenly distributed to the six traffic sign classes and an
additional class for images without traffic sign with 1366x768 pix-
els resolution. The remaining 24 images with 1936x1296 pixels
resolution are foreign traffic images captured at different distances
from 10 meters to 120 meters with 10-meter increment. For the
recognition models, 12,120 images will be used to evaluate speed
and accuracy. This dataset is augmented using different cropping
methods including zooming, north-west cropping and south-east
cropping to act as learning compensation when segmentation of the
traffic sign is not centered. The dataset will be divided into train
data (10%, 5%, 1%) and test data (90%, 95%, 99%) to determine
the effect of the number of test data to models’ accuracy. Another
set contains six video footages with 360 frames of traffic images,
308 frames of which contain traffic sign. These are recorded using
the actual system camera setup attached in a sedan car while ap-
proaching the traffic sign to be detected. Figure 4 shows a sample
frame image from a video of a local road while Figure 5 shows
sample images from the Napier University traffic dataset.

Figure 4: Sample traffic image from local road

Figure 6 shows the sample traffic signs from the dataset to be
classified. This dataset contains a total of 2,020 images per class for
the training and testing phases and is composed of different signs
ranging from high resolution images up to 699x693 pixels down to
low-resolution images of 12x12 pixels.

Figure 5: Sample traffic images from Napier University dataset

Figure 6: Sample traffic sign dataset

3.2 Traffic Sign Detection

The detection process is summarized by Figure 7 where the high-
lighted blocks are to be replaced by each of the four detection
methods to be evaluated. From the original traffic image, red pixels
are segmented using color thresholding. The resulting mask under-
goes edge detection before Hough transform is applied to detect
circular shape. The center and radius information is used to crop the
candidate traffic sign for the next phase of classification. A traffic
sign is considered detected if the cropped image fully shows the
entirety of the traffic sign including the red circular boundary.
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Figure 7: Traffic sign detection process

Experimentation for segmenting the red boundary of the traffic
sign using HSV and relative RGB color spaces have resulted to
the following threshold range summarized in Table 3 and Table
4. Figure 8 shows masks of segmented red color from an original
traffic image using Relative RGB and HSV color segmentation.

Table 3: Range values for HSV color segmentation

Color Component/Channel Range
Hue 0 ≤ h ≤ 10 or 160 ≤ h ≤ 179

Saturation 80 ≤ s ≤ 255
Value 60 ≤ v ≤ 255

Table 4: Range values for relative RGB color segmentation

Color Component/Channel Range
Red 60 ≤ r ≤ 255

Red minus Green 35 ≤ r-g ≤ 135
Red minus Blue 8 ≤ r-b ≤ 204

Figure 8: Sample relative RGB and HSV segmented red mask

Table 5: Accuracy of pre-processing and color segmentation methods

Method Total Images TP TN FP FN Accuracy
RRGB 2,170 535 299 11 1,462 32.12%

SHI 2,170 576 292 18 1,284 40.00%
BFM 2,170 503 304 6 1,357 37.19%
CCM 2,170 586 294 16 1,274 40.55%

Table 5 summarized the evaluation of the four pre-processing
and color segmentation methods. In terms of accuracy, Color Con-
stancy method provided the best performance successfully detecting
586 traffic signs from 2,170 traffic images. It is closely followed

by the Shadow and Highlight Invariant method with 576 detec-
tion. Bilateral Filtering method and Color Constancy method have
Shadow and Highlight Invariant method for color detection but
results show improvement with Color Constancy method while per-
formance degradation for Bilateral Filtering method due to (1) color
improvement done by the Color Constancy method to the traffic
image, and (2) images from the dataset are generally blurry due
to vehicle vibration and environmental parameters that affect the
performance of the Bilateral Filtering method. For Relative RGB
implementation, color segmentation resulted to less false detection.
Figure 9 shows the result of successful detection of traffic signs for
six traffic images taken from local road using Shadow and Highlight
Invariant method.

Figure 9: Sample detection of traffic sign

Table 6: Number of successful segmentation of pre-processing and color segmenta-
tion methods vs. traffic sign capturing distance

Distance RRGB SHI BFM CCM
120m 0 0 0 0
110m 0 0 0 0
100m 0 0 0 1
90m 0 0 0 0
80m 0 0 0 1
70m 0 2 1 1
60m 0 2 2 2
50m 0 2 2 2
40m 0 2 2 2
30m 0 2 2 2
20m 0 2 2 2
10m 2 2 2 2

Table 6 shows the evaluation of segmentation success of traffic
sign with varying capturing distances. The traffic sign is captured
twice per given distance. Color Constancy algorithm correctly seg-
mented 15 out of 24 traffic images in the dataset with detection
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distance up to 100 meters. Shadow and Highlight Invariant Method
correctly segmented 14 out of 24 images with detection distance
up to 70 meters. Bilateral Filtering Method correctly detected 13
out of 24 images with detection distance up to 70 meters. Relative
RGB Method has the worse performance detecting only 2 out of 24
images with detection distance up to 10 meters and false detecting
13 images. This result validates the accuracy evaluation of the four
methods previously discussed in Table 5 and suggests that traffic
sign distance affects the image feature clarity of the sign on the
image and causes significant decrease in detection success rate.

Table 7 summarizes the processing speed of the four pre-
processing and color segmentation methods including execution
speed of their sub-processes. This timing does not include shape
detection and ROI localization as these processes are common to
all methods. Relative RGB segmentation has the fastest processing
time closely followed by the Shadow & Highlight Invariant method.
The slight difference is due to color space conversion from RGB to
HSV. Different processor runtime caused variable timing result for
color segmentation process for Shadow & Highlight Invariant, Bi-
lateral Filtering, and Color Constancy. These two employed simple
pre-processing while Color Constancy and Bilateral Filtering meth-
ods are pre-processing methods themselves and perform multiple
and complex image filtering using kernels.

Considering accuracy and processing speed, the pre-processing
and segmentation method that provided the best trade-off is Shadow
and Highlight Invariant method with 40.00% segmentation success
rate and 31.2 ms processing speed.

Table 7: Processing speed of pre-processing and color segmentation methods and
sub-processes

Method Pre-processing Color Segmentation Total
RRGB 10.4 ms 15.6 ms 26.0 ms

SHI 5.2 ms 26.0 ms 31.2 ms
BFM 270.8 ms 18.2 ms 289.0 ms
CCM 494.8 ms 20.8 ms 515.6 ms

3.3 Feature Extraction

HOG feature extraction of a traffic image is shown in Figure 10. It
starts from grayscale conversion followed by edge detection then by
HOG feature extraction. HOG feature represents the general struc-
ture of the image using the dominant orientation of pixel groups.
This process transforms the 2D image into 1D vector histogram
representing the gradient direction of the image.

3.4 Classifier Evaluation

Table 8 shows the result of implementation of traffic sign classifi-
cation using Multi-layer Perceptron Classifier with variable image
input resolution. This shows that more feature pixels will not always
provide the best accuracy for a given classifier and the optimum im-
age resolution considering accuracy and processing speed is 50x50
pixels.

Table 9 summarizes the result of evaluating the 10 classification
algorithms in terms of accuracy with the number training data var-
ied. Most of the model showed downward trend in accuracy when

training data is decreased. GPC, though has one of the best accuracy
for higher number of training data, provided the worse performance
for decreasing training data since optimization is being done using
squared-exponential kernel to best fit few training data leading to
misclassification. Convolutional Neural Network implementation
obtained the best accuracy among the models. This is due to learn-
ing optimization using backpropagation decreasing the loss function
resulting to higher classification success rate. With lesser training
data, CNN still has the best accuracy. This is important to consider
to ensure that the model will still provide better accuracy even when
trained with fewer data. Figure 11 shows the normalized confusion
matrix generated for CNN classifier.

Figure 10: Test image feature extraction

Table 8: Effect of input image size to accuracy and processing speed for MLPC

Input Image Resolution Accuracy Processing Time
200x200 pixels 88.89% 454.5 ms
100x100 pixels 88.49% 331.2 ms

50x50 pixels 91.23% 283.2 ms
32x32pixels 85.32% 321.0 ms

Table 9: Effect of number of training data to accuracy

Classifier 10% Train 5% Train 1% Train Average
KNN 94.63% 92.06% 86.70% 91.13%
SVM 89.72% 87.37% 57.21% 78.10%
GPC 93.87% 80.95% 16.63% 63.82%
DTC 72.45% 68.35% 57.90% 66.23%
RFC 76.59% 73.27% 60.17% 70.01%

MLPC 93.54% 91.19% 86.36% 90.36%
ADAB 62.50% 54.95% 35.64% 51.03%
GNB 85.44% 85.46% 77.50% 82.80%
QDA 54.07% 30.80% 26.28% 37.05%
CNN 96.64% 94.63% 87.64% 92.97%

K-Nearest Neighbor performed the second best in terms of ac-
curacy closely followed by Multilayer Perceptron. This can be
accounted to the characteristics of dataset. Each class of the dataset
used is primarily composed of very similar images, and results
suggest that KNN works better for data with close similarity.

The result of the evaluation of processing speed of the classi-
fication algorithms and their sub-processes for 90% of dataset is
summarized in Table 10. CNN got the longest training time due to
its nature of performing loss function optimization. Total recogni-
tion time is measured from color conversion until prediction and
CNN obtained the fastest processing time. This is due to lesser
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pre-processing being implemented by the method unlike the other
algorithms that still perform color conversion and extract HOG fea-
tures to every input traffic sign image to classify. Recognition time
for all classifiers is below 20 ms except for GPC with 750.6 ms due
to the use of more complex squared-exponential kernel.

Figure 11: Normalized confusion matrix for CNN classifier

Table 10: Processing speed of classifiers and sub-processes

Classifier
Feature
Extract

Train
Time

Color
Convert

Image
Resize Predict TOTAL

TIME
KNN 16.04s 0.05s 1.56ms 10.42ms 5.21ms 17.19ms

SVC 16.04s 0.64s 1.56ms 10.42ms 0.00ms 11.98ms

GPC 16.04s 272.8s 1.56ms 10.42ms 738.6ms 750.6ms

DTC 16.04s 0.47s 1.56ms 10.42ms 0.00ms 11.98ms

RFC 16.04s 0.02s 1.56ms 10.42ms 2.08ms 14.06ms

MLPC 16.04s 6.62s 1.56ms 10.42ms 0.00ms 11.98ms

AdaB 16.04s 5.32s 1.56ms 10.42ms 6.77ms 18.75ms

GNB 16.04s 0.03s 1.56ms 10.42ms 2.60ms 14.58ms

QDA 16.04s 0.43s 1.56ms 10.42ms 4.16ms 16.15ms

CNN - 581.4s - 5.21ms 2.60ms 7.81ms

Table 11 shows result of optimization of the best detection and
classification models based on the evaluation. These models are
Shadow and Highlight Invariant method and Convolutional Neural
Network classifier.

Table 11: Optimization of detection and recognition models

Parameter
Original
Model

First
Optimization

Second
Optimization

Total Images 2,170 2,170 2,170
TPdetection 576 1,372 1,372
TNdetection 292 300 300
FPdetection 18 40 40
FNdetection 1,284 458 458

TPrecognition 547 1,240 1,257
TNrecognition NA NA 4
FPrecognition 47 172 147
FNrecognition NA NA 4

The first optimization resulted to improvement of correct detec-
tion and significant decrease in false detection. The process involved
modification of threshold parameters of Hough circle transform for
it to detect circle less strictly since traffic sign boundaries most often
are elliptical in shape in the traffic image due to variable viewing

angle. Hough transform is also adjusted to only detect circles with
diameter less than one fifth of the image height. The limiting of
circular detection is important since detecting larger circles will
result to more pixel features thus will require longer processing
time. Also in actual application, traffic signs do not often occupy
the entire traffic image.

For the second optimization where a seventh class is added,
results in Table 11 show further increase in correct recognition and
decrease in false recognition. The additional class filters signs that
are similar to any of the six classes, and once recognized as false
class, no output will be generated by the model.

Results show that the optimized integrated model has a detection
performance of 77.05% and recognition performance of 89.31%.
The relatively low detection performance is due to the failure of the
Hough transform to detect the circular boundary of the traffic sign
since the appearance of the traffic signs are affected by the viewing
angle and effect of environmental setting to image quality. Although
adjusting the detector threshold to lower value resulted to detection
improvement, further decrease in threshold resulted to more false
detection. The overall accuracy of the model is 68.81%.

3.5 System Implementation

After implementing the system using Nvidia Jetson Nano platform,
a timing comparison between the performance of the system using
Lenovo U410 Ultrabook is presented in Table 12. Training time
and accuracy of both implementation are relatively the same. The
huge difference lies in processing time with Nvidia Jetson Nano
almost doubled that of the Lenovo U410. This is due to the clocking
difference of the processors of the two platforms.

Table 12: Performance comparison between Lenovo U410 and Nvidia Jetson Nano

Parameter Lenovo U410 Nvidia Jetson Nano
Training Time 678.94 s 679.10 s

Processing Speed 131.3 ms 238.0 ms
Accuracy 95.58% 97.24%

Figure 12 shows some of the successful detection and recogni-
tion where traffic signs are annotated to each frame of actual local
road video. Table 13 summarizes the timing analysis of the entire
TSDR system with text annotation and voice alert output. The sys-
tem has a total processing time of 1.0953 seconds. It takes about
0.73 ms to display the text annotation of the detected and recognized
traffic sign while it takes 938.21 ms for the system to utter the entire
phrase for voice alert. For voice alert system, the next frame can
only be processed after it has finished all the required processing
for current frame including uttering the meaning of the sign.

Given this timing values, the system without voice alert and
only using text annotation as output can run at a maximum frame
rate of 1/116.7ms or approximately 8 frames per second. For the
system with voice alert output, the system requires a frame rate of
1/1.0953 seconds or less than 1 frame per second for it to run in real-
time. Since voice alert must be implemented, having a frame rate
of less than 1 fps will result to poor sampling causing traffic signs
to not be detected especially for fast moving vehicles. A solution
is to implement adaptive frame rate such that during non-detection,
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the system will run at approximately 8 to 12 fps and when there
is a traffic sign detected, frame rate shifts to approximately 1 fps
to cater for the voice alert output. Figure 13 shows the hardware
configuration block diagram of the system while Figure 14 shows
the actual setup of the TSDR system for road testing. Figure 15
shows the testing of the TSDR system using actual footage from
local road.

Figure 12: Sample detection and recognition of traffic frames

Table 13: Timing of sub-processes of the TSDR system

Process Processing Time
Input Acquisition 13.69 ms

BGR to HSV Conversion 2.49 ms
Red Color Segmentation 5.22 ms

Gaussian Blurring 1.52 ms
Median Blurring 7.64 ms

Binary Thresholding 11.44 ms
Erosion 0.75 ms
Dilation 0.63 ms

Circle Detection 70.96 ms
ROI Cropping 7.09 ms

Image Transformation 4.79 ms
Prediction 30.13 ms

Text Annotation 0.73 ms
Voice Alert Output 938.21 ms

TOTAL TIME 1.0953 s

Table 14 shows the result of testing the TSDR system using a
total of 360 frames from six different actual footage (F1-F6) from
local roads. The footage contains 308 frames where traffic sign is
fully visible with approaching distance and 52 frames where the
traffic sign is not visible. The system had detection on 83 traffic im-
ages (TPdetection + FPdetection), of which 30 were classified correctly
to not contain traffic signs (TNrecognition), 20 were correctly classi-

fied (TPrecognition), and 33 were incorrectly recognized (FPrecognition).
The system has a detection accuracy of 32.50% and a recognition
accuracy of 60.24%. The overall accuracy of the system is 19.58%.
The low accuracy is due to the poor image quality caused by several
factors including (1) poor camera, (2) vehicle motion and vibration,
and (3) environmental setting.

Figure 13: TSDR hardware configuration diagram

Detection and recognition of traffic sign in every frame is ideal
for a ATSDR system but in actual application, one traffic sign cor-
rectly detected and recognized is enough to provide road information
to the driver. Out of 6 sets of image sequences, 3 sets or 50% have
at least one of the frames correctly detected and recognized.

Table 14: Test using frames from actual local road footage

Parameter F1 F2 F3 F4 F5 F6 TOTAL
No. of Frames 87 73 64 32 48 56 360

TPdetection 12 29 2 0 0 23 66
TNdetection 12 7 8 8 8 8 51
FPdetection 3 8 0 0 0 6 17
FNdetection 60 29 54 24 40 19 226

TPrecognition 0 7 2 0 0 11 20
TNrecognition 9 15 0 0 0 6 30
FPrecognition 6 15 0 0 0 12 33
FNrecognition 0 0 0 0 0 0 0

Sign Detected? No Yes Yes No No Yes 50%

Figure 14: TSDR car setup for actual road testing
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Figure 15: Sample frames from actual TSDR footage

4 Conclusion

Among the four evaluated pre-processing and detection methods,
Shadow and Highlight Invariant method provided the best trade-off

between segmentation success rate and processing time due to the
less complex image filtering approach and use of HSV color space.
Convolutional Neural Network classifier has the best performance
in both accuracy and processing speed among the ten evaluated algo-
rithms for traffic sign recognition due to the optimization method of
the loss function using back propagation and the in-system feature
extraction method of the algorithm. In classification, additional
class to contain the not targeted traffic signs provides improvement
of false detection performance.

An embedded system using Nvidia Jetson Nano platform with in-
terface IMX219-77 camera, Waveshare 7” LCD and generic speaker
using Python and OpenCV, sci-kit learn and Pytorch libraries has
been developed. Implementation of adaptive frame rate improves
sampling and provides an approach to handle variable frame pro-
cessing time for a real-time system.

This study has not only provided comparative analysis on de-
tection and recognition performance of several algorithms based
on accuracy and processing speed but also able to implement a
real-time embedded system. Further improvement to the system
includes the use of better high definition camera with better image
sensor and optical image stabilization. This can also be improved
by the use of better detection and recognition algorithm like masked
R-CNN. Also, further study can be done on the extension of applica-
tion of the study to include other traffic signs and signals, and road
markings.
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